e-mail: info@appmateng.com

FAX: (510) 420-8186

March 23, 2011

Revised on 12/13/2011 to Include Tensile Strength Tests

Mr. Stewart Wentworth **QUICK MOUNT PV** 936 Detroit Avenue, Suite D Concord, CA 94518-2539

Project Number 111114C

**Subject:** New Construction Composition Mount (QMNC 3-3/4" Finished Height) Load Testing

Dear Mr. Wentworth:

As requested, Applied Materials & Engineering, Inc. (AME) has completed load-testing the New Construction Composition Mount (QMNC) hardware. The purpose of our testing was to evaluate the shear and tensile load capacity of the New Construction Composition Mount hardware attached to a commercially available 2"x4" Douglas Fir rafter.

### SAMPLE DESCRIPTION

Nine (9) mockup samples were delivered to our laboratory on March 9, 2011. Mockup configuration consisted of three 16" long rafters at 7"o.c., screwed to 1/2" Structural 1 plywood. The 3-3/4" (finished height) Quick Mount Standoff (QMSO) hardware is attached through the plywood into the rafter with two 5/16"x3" lag bolts torqued to 15ft-lbs. Product hardware details are provided in Appendix B.

### **TEST PROCEDURES & RESULTS**

### 1. Shear Strength Parallel to Rafter

Three samples were tested for shear strength on March 18, 2011 using a United Universal testing machine. Samples were rigidly attached to the testing machine and a shear load was applied to the 5/16"x1" machine bolt connected to the aluminum standoff. The samples were loaded parallel to rafter at a constant rate of axial deformation of 0.01 in./min. without shock until failure occurred. Based on the above testing, the average ultimate shear load, parallel to rafter, of the QMNC hardware in Douglas Fir was determined to be 1972 lbf.

The specific gravity and moisture content of the rafter was tested in accordance with ASTM D2395, Method A (oven-dry). The average specific gravity and moisture content was determined to be 0.417 and 17.4%, respectively. Detailed results are provided in Table I. Test setup and mode of failure are provided in Appendix A.

### 2. Shear Strength Perpendicular to Rafter

Three samples were tested for shear strength on March 18, 2011 using a United Universal testing machine. Samples were rigidly attached to the testing machine and a shear load was applied to the 5/16"x1" machine bolt connected to the aluminum standoff. The samples were loaded perpendicular to rafter at a constant rate of axial deformation of 0.01 in./min. without shock until failure occurred. Based on the above testing, the average ultimate shear load, perpendicular to rafter, of the QMNC hardware in Douglas Fir was determined to be 1466 lbf.

The specific gravity and moisture content of the rafter was tested in accordance with ASTM D2395, Method A (oven-dry). The average specific gravity and moisture content was determined to be 0.494 and 17.2%, respectively. Detailed results are provided in Table II. Test setup and mode of failure are provided in Appendix A.

### 3. Tensile Strength

Three samples were tested for tensile strength on June 29, 2011 using a United Universal testing machine. Samples were rigidly attached to the testing machine and a tensile load was applied to the 5/16"x1" machine bolt connected to the aluminum post. The samples were loaded in tension at a constant rate of axial deformation of 0.05 in./min. without shock until failure occurred. Based on the above testing, the average ultimate tensile load of the QMNC hardware in Douglas Fir was determined to be 3031 lbf.

The specific gravity and moisture content of the rafter was tested in accordance with ASTM D2395, Method A (oven-dry). The average specific gravity and moisture content was determined to be 0.436 and 20.9%, respectively. Detailed results are provided in Table III. Test setup is shown in Appendix C.

No. 35535

If you have any questions regarding the above, please do not hesitate to call the undersigned.

Respectfully Submitted,

APPLIED MATERIALS & ENGINEERING, INC.

Mohammed Faiyaz Laboratory Manager Reviewed By:

Armen Tajirian, Ph.D., P.E.

Principal

### **TABLE I**

# NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT

### SHEAR LOAD PARALLEL TO RAFTER TEST RESULTS

| SAMPLE<br>ID | ULTIMATE<br>SHEAR LOAD<br>PARALLEL TO<br>RAFTER (LBF) | RAFTER<br>MOISTURE<br>CONTENT (%) | RAFTER<br>SPECIFIC<br>GRAVITY | FAILURE<br>MODE <sup>1.</sup> |
|--------------|-------------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------|
| PARA-1       | 1904                                                  | 18.3                              | 0.419                         | Lag Bolt Pull-Out             |
| PARA-2       | 1848                                                  | 17.5                              | 0.449                         | Lag Bolt Pull-Out             |
| PARA-3       | 2165                                                  | 16.5                              | 0.384                         | Lag Bolt Pull-Out             |
| AVERAGE      | 1972                                                  | 17.4                              | 0.417                         | ••                            |

<sup>&</sup>lt;sup>1.</sup> Upper bolt.

### **TABLE II**

# NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT

### SHEAR LOAD PERPENDICULAR TO RAFTER TEST RESULTS

| SAMPLE<br>ID | ULTIMATE<br>SHEAR LOAD<br>PERPENDICULAR<br>TO RAFTER (LBF) | RAFTER<br>MOISTURE<br>CONTENT (%) | RAFTER<br>SPECIFIC<br>GRAVITY | FAILURE<br>MODE                         |
|--------------|------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------------|
| PERP-1       | 1627                                                       | 17.6                              | 0.549                         | Plywood<br>Buckled/Bent                 |
|              |                                                            |                                   |                               | Machine Bolt                            |
| PERP-2       | 1484                                                       | 18.1                              | 0.533                         | Plywood<br>Buckled/Bent<br>Machine Bolt |
| PERP-3       | 1286                                                       | 16.0                              | 0.400                         | Plywood<br>Buckled/Bent<br>Machine Bolt |
| AVERAGE      | 1466                                                       | 17.2                              | 0.494                         | ••                                      |

### **TABLE III**

# NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT

### TENSILE LOAD TEST RESULTS

| SAMPLE<br>ID | ULTIMATE<br>TENSILE LOAD<br>(LBF) | RAFTER<br>MOISTURE<br>CONTENT (%) | RAFTER<br>SPECIFIC<br>GRAVITY | FAILURE<br>MODE   |
|--------------|-----------------------------------|-----------------------------------|-------------------------------|-------------------|
| 7PULL-1      | 2807                              | 20.7                              | 0.402                         | Lag bolt pull-out |
| 7PULL -2     | 3283                              | 22.0                              | 0.476                         | Lag bolt pull-out |
| 7PULL -3     | 3003                              | 20.0                              | 0.430                         | Lag bolt pull-out |
| AVERAGE      | 3031                              | 20.9                              | 0.436                         | ••                |

### APPENDIX A

# NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT SHEAR TEST SETUP

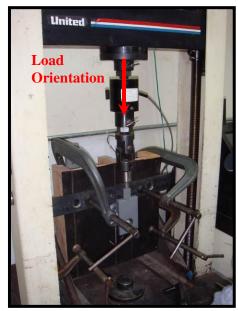



Figure 1a. Shear Parallel to Rafter



Figure 2a. Shear Perpendicular to Rafter

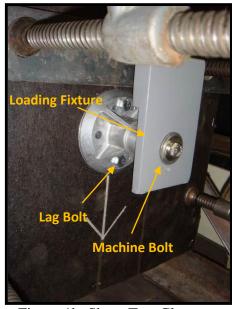



Figure 1b. Shear Test Close-up



Figure 2b. Shear Test Close-up

# NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT TYPICAL FAILURE MODE



Figure 3. Lag Bolt Pull-Out Shear Parallel to Rafter

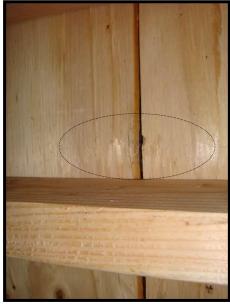



Figure 4a. Buckled Plywood Shear Perpendicular to Rafter

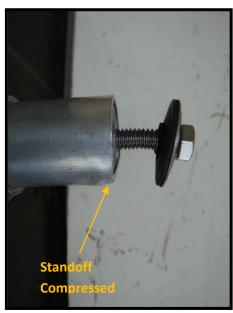
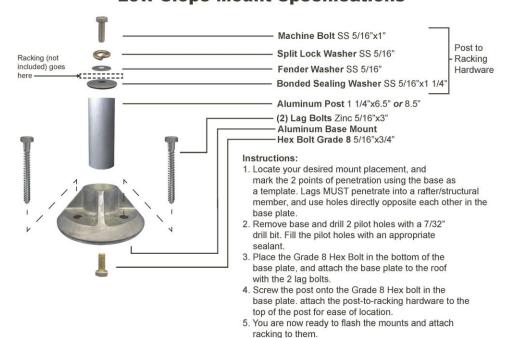



Figure 4b. Bent Bolt Shear Perpendicular to Rafter

**APPENDIX B** 


### NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT

### **HARWARE SPECIFICATION**

### PROJECT NUMBER 111114C

# Quick Mount PV® Your Solution in Mounting Products Solar • H<sub>2</sub>O • Conduit • HVAC • Custom

### **Low Slope Mount Specifications**



### IMPORTANT-PLEASE READ:

This product DOES NOT include flashing, and therefore is not waterproof by itself. As the installer, it is your responsibility to make sure all roof penetrations are flashed properly!

Lag pull-out (withdrawal) capacities (lbs) in typical lumber:

#### Lag Bolt Specifications

|                                                  | Specific<br>Gravity | 2/ea 5/16° shaft<br>per 2.5"<br>thread depth | 5/16" shaft<br>per 1"<br>thread depth |                                                                                                    |
|--------------------------------------------------|---------------------|----------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|
| Douglas Fir, Larch<br>Douglas Fir, South         | .50<br>.46          | 1330<br>1175                                 | 266<br>235                            |                                                                                                    |
| Engelmann Spruce, Lodgepole Pine                 | .40                 | 1175                                         | 233                                   | Sources: Uniform Building Code; American Wood Council                                              |
| (MSR 1650 f & higher)                            | .46                 | 1175                                         | 235                                   | Notes: 1) Thread must be embedded in a rafter or other structural roof member.                     |
| Hem, Fir                                         | .43                 | 1060                                         | 212                                   | <ol><li>Pull-out values incorporate a 1.6 safety factor recommended by the American Wood</li></ol> |
| Hem, Fir. (North)                                | .46                 | 1175                                         | 235                                   | Council,                                                                                           |
| Southern Pine                                    | .55                 | 1535                                         | 307                                   | See IBC for required edge distances.                                                               |
| Spruce, Pine, Fir                                | .42                 | 1025                                         | 205                                   |                                                                                                    |
| Spruce, Pine, Fir (E of 2 million psi and higher |                     |                                              |                                       |                                                                                                    |
| grades of MSR and MEL)                           | 50                  | 1330                                         | 266                                   | 936 Detroit Ave Suite D, Concord, CA. 94518                                                        |
|                                                  |                     |                                              | 1 of 1                                | Phone: (925) 687-6686 Fax: (925) 687-6689<br>Email: info@quickmountpy.com www.quickmountpy.com     |

APPENDIX C

# NEW CONSTRUCTION COMPOSITION MOUNT (QMNC) 3-3/4" FINISHED HEIGHT

### **LOAD TEST SETUP**



Tensile Test

### **Report Revision History**

12/13/2011

Pages 1 & 2: Editorial revision

Page 2: Tensile strengths tests added

Page 5: Table III added Page 11: Appendix C added